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SUMMARY

The n-widths of a subset A of a Banach space B describe how well the
clements of A can be approximated by elements of n-dimensional subspaces
of B. This paper investigates relations between n-widths and error estimates
for quadrature formulas. These estimates describe how well a linear form
on a function class A can be approximated by quadrature formulas with 11

knots. For the case that A is a class of bounded functions, we compare the
n-widths dn(A), referring to the sup-norm, with deterministic error
estimates en(A, pi, for some linear form {Ion A, defined by

en(A, p) = inf sup IpU) - !dIlI,
I1n fEA

where fln runs through all quadrature formulas with n knots. In order to
get from en(A, fl) to a quantity which depends only on A, we introduce

enfA) = sup e,,( A, jJ.).
11!'11~1

For an arbitrary class A of bounded functions, the following relation to the
n-widths holds:

In spite of this connection, the behavior of dn and en turns out to be very
different, in generaL For instance, the asymptotic behavior of dn and en is
the same if A is a Holder class or a Sobolev class with p ;?; 2 but is different
if A is a Sobolev class with 1~ p < 2. The last statement will be shown in.
another paper, by a different method.

In the second part of the paper, we investigate stochastic error bounds
G n(A, fl) and () n(A) for stochastic quadrature formulas, introduced via
variances, and their relations to the n-widths, based on the L~-norm. We
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improve a general lower estimate of Bahvalov for O",,(A, /1) and give new
stochastic error bounds for some special function classes. Concerning the
asymptotic behavior, we see that in some interesting cases the stochastic
error bounds converge faster than the deterministic ones. Quantitatively,
the improvement amounts to the factor n - 1/2.

1. DETERMINISTIC QUADRATURE FORMULAS

Let X be an arbitrary set, B(X) = {f: X ~ IR If bounded}, and A ~ B(X).
First we give a result which generalizes the well-known interpolation
theorem (see Shapiro [14]):

PROPOSITION 1. Let V ~ B(X) be a vector space with dim V = n E Nand
L: V ~ IR linear. Then for each e > 0 there exist x I , ... , x" E X and a 1"'" a" E IR
with

"
L(f) = L aJ(x;) for all f E V

i= 1

and

"IILII ~ L lail ~ jlLl1 + e.
i= 1

Proof In the case where X is compact and T' consists of continuous
functions, this proposition holds even for e = 0 (this is the interpolation
theorem mentioned). We reduce the general case to this special case: The
set !vI = {f E V I II f II = 1} is compact, and for (j 1 > 0 there exist
fl, ...,fmE!vI with !vI=U;"~1 {fE!vIlllf-fill~(jd. For (j2>O let Xi be
given so that Inx;)I;:,1-(j2 U=l, ...,m). By eventually making
K' = {XI"'" x m } larger we can assume that for V' = {fiK I fE V} with K
finite and K' ~ K the statement dim V' = n holds.

Now we apply the above-mentioned special case to K, V', and L' defined
by L'(f/K) = L(f). Because of Ilf/KII;:, Ilfll' (1- b l -(2 ) for all fE V we
get L(f)=L7~,aJ(xJ with

"IILII ~ I lail = IIL'II ~ IILII' (1-b l -b2 )-1

i~1

and the statement follows.
Now we define the nth error bounds for deterministic quadrature for

mulas that we want to compare with the n-widths, referring to the sup
norm:
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DEFINITION. Let fl E B'(X) (the latter being the dual of B(X)) and M n=

{,unEB'(X) IflnU)=L7~1 aJ(x i ) for some a i and Xi}' Set

en(A,fl)= inf sup IflU)-fln(f)1
J1-n E1Hn lEA

and

en(A)= sup en(A,fl).
111'11,,;1

The n-widths of A in B(X) as defined by Kolmogorov [8] are given by

d/l(A) = inf sup inf Ilf - gil,
Xn .rEA gEXn

where X/l runs through all vector spaces of B(X) of dimension 11.

PROPOSITION 2.

e/l(A,fl)~2'llflll'd/l(A)

and rhere(ore

Proof Let A, fl, n, and s > 0 be given. There is a vector space V s; B(X)
with dimV=n and sup(EAinf~Evllf-gil~d/l(A)+s. Because of
Proposition 1 there is a fln E lvIn ~ith flnU) = flU) for all f E V and
Ilfl/lil ~ Ilflll + s. Therefore IflnU) - flU)1 ~ (d/l(A) + s) . (11flll + Ilflnll) ~
(d/l(A) + s)· (2 Ilflll + s) for all fE A. The statement follows from this.

Remark. By examples one can show that the constant 2 in
Proposition 2 is optimal; i.e., in general it cannot be replaced by a smaller
constant.

EXAMPLES. (1) Let X be compact, As; C(X) and M(X) = C(X) the set
of all (Radon-) measures on X.

Then

e/l(A) = sup en(A, f.1).
I'EM(,·n

111'11,,;1

(2) Let Ck,,,([O, 1]') (SE N, kENo, 0<(X~ 1) be the Holder class
{f:[0,IY-->[f;£IID(k1(x)-D(k'ft}')I~llx-x for all derivatives of
order k}. Then e/l(Ck,,,([O, 1]'), AS) ~ en(Ckx([O, 1]') ~ d/l(Ck,~

([0, 1]')) ~ n-(k+>I/S holds. Here all ~ bn means that there exist C I , C2 >0
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with C I < anlbll < C2 for all n EN. This result is a consequence of
Proposition 2 and known facts about ell (C

k
,,,( [0, 1]'), II.!) (see Bahvalov

[1]) and dll(Ck·,,([O, 1]')) (see Lorentz [10] or Tihomirov [15]).

PROBLEM. We state the following problem: For which A f; B(X) does
ell(A)~O? The analogous problem for dll(A) is easy: dll(A)~O iff
A f; V + S with a finite-dimensional V and a compact S. As Proposition 3c
shows, there are "very large" sets A f; B(X) with en(A) ~ 0.

We now investigate ell(A) for a vector space A. The analogous problem
for dll(A) is very easy: dn(A) = UJ holds for all n < dim A and dn(A) =°for
all n ~ dim A. We consider the case where X is a compact space and
A f; C(X):

PROPOSITION 3. (a) Let X be compact and scattered (the latter means
that there is no nonempty subset of X without isolated points; see Semadeni
[13]) and A f; C(X), dim A = m. Then en(A) = UJ holds for all n < m.

(b) Let X be compact and A f; C(X), dim A > n, and let A contain a
Chebyshev system of n functions. Then en(A ) = r:IJ holds.

(c) If X is compact but not scattered then there is an A f; C( X) with
dim A = UJ but en(A) =°for all n EN. That means that for each 11 E B'(X)
there is a representation

(for all f E A).

Proof (a) Let A = <fl ,,,., 1,,,) and dim A = m ~ 2 (there is nothing to
prove for m = 1). Then Y = {( fl (x ),,,., f,,,(x)) I x E X} f; [Rill is countable
(see Semadeni [13]). Because W' is not the union of countable many sub
spaces of dimension n < m, the set M = {y E [Rill I y = L7~ I Ai Yi, Ai E [R,

YiE Y} is a proper subset of [Rill. Let ;'E[RIIl\M and consider a IlEB'(X)
with Y= (Il(fd,oo., Il(flll))' It is easy to show that en(A, 11) = UJ is valid and
therefore the statement follows.

(b) Let A=<fl""'f,,,) with dimA=m>n and let {fl,''''f,,} be a
Chebyshev system. Let 11 E B'(X) with Il(fJ =° for i = 1'00" nand
Il(fn + I) = 1. Assuming Il(f) = L7~ I aJ(xi) for all f E A (where we can
presume the Xi to be different) from L7~ I aJ;CxJ =°for j= 0,,,., n, it
follows that ai = ° for all i = 1,,,., n, which contradicts the fact that
L;'~ I ail" + I(XJ = 1.

(c) Because X is compact but not scattered, there exists a continuous
h: X ~ [0, 1] which is onto. Because [ -1, 1] N is a Peano space there even
exists a continuous h*: X ~ [ -1, 1] 1\1 which is onto. Then the projections
hi*(i EN) of h* are continuous and linear independent. Therefore, for
A = <fl, f2'''')' dim A = UJ holds. Let 11 E B'(X) with 111111:( 1. Then
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fl(hf)=kiE [-1,1] for all iE N. There is an XoEX with h*(xo)=
(k l ,k2 , ... ). Then fl(hf)=hi(xo) holds for all i and therefore el(A,fl)=O
and the statement follows.

Remark. For the Sobolev classes W;( [0, 1y) = {f: [0, 1r ----+

IR I Llal~k IID(aYll p :( 1} in the case pk>s (imbedding condition)

e,,(W;([O, 11'), AS) 1-\ enUV;([O, 11')) 1-\ n-kS

holds (see Novak [11]).
The lower estimate follows from arguments similar to Bahvalov [1], and

the upper estimate in the case 2:( p :( \X) follows from Proposition 2 and
known facts about the n-widths of these classes. The case 1 :( p < 2 is much
more difficult because then the relation

is not valid (see Hollig [6] or Kashin [7]).

2. STOCHASTIC QUADRATURE FORMULAS

Let (X, 0, fl) be a finite signed measure space and A a set of fl-integrable
functions on X. A stochastic quadrature formula Q" E S" with n knots is a
random variable with values in X" x W = jl,,(X). By QnU) we denote the
random variable

n

Q,,(f) = L aJ(xJ,
i= 1

Analogously to the en(A, Jl) we now define the nth error bound for
stochastic quadrature formulas,

<In(A,fl)= inf sup (E(fl(f)-Q,,(f))2)12
Qn ES" fEA

(where E is the expectation of a random variable). For a given measurable
space (X, 0) we define

<In(A) = sup <J,,(A, fl),

where f1 runs through all signed measures on (X, 0) with Ilflll :( 1.

EXAMPLE. If X is compact and 0 is the Baire <J-algebra then for
A c;: C(X) the numbers en(A) and <In(A) are directly comparable because
the signed measures on (X, 0) and the Radon measures on C(X) corres
pond to each other.
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The following statement is a more precise version of a result of Bahvalov
[1 ]:

PROPOSITION 4. Let A S; L 1(X, G, fJ) and ff (i = 1,..., 2n) with the follow
ing conditions:

(i) the fi have disjunct supports and fulfill fJ(f;)?; e for all i = 1,..., 2n,

(ii) for all 6 i E { -1, I} the function L.~: 1 6Ji is an element of A.

Then 0",,( A, fJ) ?; (e12 ) . n1/2 is valid.

Remark. Under the same conditions Bahvalov's [1 J method gives
0",,(A, fJ) ?; e' C' n 1/2 with some unfixed c > 0, independent of n.

Proof Let A= u:::~: 1 6 i /; I 6 f E { -1, I}} and for fJ" E M,,(X) let
F(fJ,,)=L.fEA IfJ,,(f)-fJ(fW· Then

is valid. Therefore, for all Q" E S" the relation E(F( Q,,)) ?; 22
" . e2

• (n/4) is
valid and there exists an f E A with E( (Q,,(f) - fJ(f))2)?; e2. (n/4). From
this the statement follows.

Now we compare the numbers O",,(A, fJ) with the n-width of A in the
space L 2(X, G, fJ), which we denote with d",2(A, fJ):

PROPOSITION 5. Let fJ be positive and As; L 2(X, cr, fJ). Then
0"" + 1(A, Il) <: d" ?(A, fJ) . 111l11 li2

•

For the proof of Proposition 5 we need the following lemma, which is
due to Ermakov and Zolotukhin [3J; see also Ermakov [2].

LEMMA. Let fl be positive and As; L 2(X, cr, fJ) a vector space with
dim A = nand 1 EA. Then there is a Q" E S" with the following properties:

(a) E(Q,,(f)) = fl(f) for all f E L1(X, cr, fJ),

(b) Q,,(f) = fJ(f) for all f E A,

(c) E((Q,,(f) - fJ(/))2) <: Ilflll . infgE A fJ((f - g)2) for all f E L 2(X, G, fJ)·

Proof of proposition 5. For e > 0 there is a linear space V S; L 2(X, cr, fJ)
with dim V=n and sUPfEAinfgEvllf-gI12<:dn,2(A,fl)+e. We apply the
lemma to the vector space <V, 1> and get a Qn + 1 E Sn + 1 with
SUPfEA E((Qn+ l(f) - fJ(f)f) <: SUPfEA IlfJll . infgE v fJ((f - g)2) <: IlfJll'
(dn,2(A, fJ) + e)2 and the statement follows.
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Remark. With the help of Proposition 5 and known estimates of
dn.AA, /l) (see, for example, Korneicuk [9J and Parfenov [12]) one gets
estimates for the 0'n( A, /l).

Now we want to compare the numbers en(A, 11) and e,,(A) with the num
bers O'n(A,Il) and O'n(A), respectively:

PROPOSITION 6. (a) Let /l be a signed finite measure on (j;:', a) and
A <;; L[(X, cr, p) n B(X). Then O'n(A, p) ~ ell(A, fl) holds.

(b) Let X be compact, a the Baire O'-algebra on X, and A <;; C(X).
Then O',,(A) ~ ell(A) holds.

Remark. This proposition is a simple consequence of the fact that each
deterministic quadrature formula Pn E M n can be regarded as a stochastic
quadrature formula Qil E Sil with constant Xi and a i . Stochastic quadrature
formulas are interesting in those cases where the 0'n(.4, fl) converge much
faster than the corresponding ell(A, il).

Now we give some results for special function classes:

PROPOSITION 7. (a) For the class V= {f [0, 1J ~ IR I Var(f)~ I} the
statement en(V) ~ ell(V, A) ~ O'n(V) ~ O'nCV, A) ~ l/n holds.

(b) O'Il(Ck·",([O, 1]'), is) ~ O'n(Ck,,,,([O, 1y)) ~ n- 1kn )s-12.

(c) 0'nUV;( [0, 1J'), AS) ~ n -k:s-l,2 for p ~ 2.

(d) o-,J W~([O, 1yn ~ n- ks
-

12 for kp >s alld p ~ 2.

Remarks. (i) These results are due to the author [11 J and contain
those of several authors (see Bahvalov [1 J and Haber [4, 5J).

(ii) The statement 7(a) shows that stochastic quadrature formulas
do not always converge faster than deterministic ones. Another example
would be the class W~( [0, 1y) for p = 1.

(ii) In some cases the O'n(A, fl) converge faster than the
corresponding ell(A, J1). This has been remarked for the Holder classes in
the case p = )s by Bahvalov [1].
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